APPENDIX B Puget Sound Chinook Population Information ## APPENDIX B – ADDITIONAL INFORMATION ON THE BIOLOGICAL AND HABITAT CHARACTERISTICS OF PUGET SOUND CHINOOK POPULATIONS, THEIR DISTRIBUTION, ASSOCIATED HATCHERY PROGRAMS This technical appendix presents additional data referenced in Section 3, Affected Environment. Tables B-1 through B-3 provide more detailed descriptions of chinook salmon populations, and their riparian habitats, including age composition, stock origin, spawning and juvenile migration timing, spawning location, and barriers to migration. Table B-4 presents detailed information on hatchery production of chinook salmon in Puget Sound basins. Table B-5 is adapted from the Fishery Regulation Assessment Model (FRAM), the basis for estimates of fishery exploitation on chinook salmon populations. FRAM predicts point estimates for fishery impacts by stock, for specific time periods and age classes. The model simulates chinook salmon fisheries over the course of one year. Fishery harvest rates and stock exploitation rates are predicted using "base period" coded-wire tag recovery data on chinook harvest by fishery. Chinook FRAM currently includes 32 stocks, representing Puget Sound, Columbia River, Oregon and Canadian chinook salmon. The model includes fisheries operating in southeast Alaska, Canada, Puget Sound, and off the coasts of Washington, Oregon, and California. Only Puget Sound chinook salmon stocks are presented in the summary table in this appendix. Table B-6 summarizes data used to show the distribution of fishery mortality on Puget Sound chinook salmon populations. As discussed in Section 3, these impacts are estimated from recoveries of codedwire tagged indicator stocks that are released from numerous locations throughout Puget Sound. Appendix Table B-1a. Key life history traits of chinook salmon in the northern Puget Sound area of the affected environment. | RMP
Management
Unit | Population | Recover
y
Categor
y | Race | Origin | Productio
n
Type | Juvenile
Migration | Age of
Smolts
(% age 0
or 1) | Age @ Spawning (% return of given age) | | | |) | Up-Stream
Migration
Timing
(month.
week) | Spawn
Timing
(month.
week) | |--------------------------------|-----------------------------|------------------------------|------|------------|------------------------|-----------------------|---------------------------------------|--|----|----|----|----|--|-------------------------------------| | | | | | | | | | 1 | | 3 | | 5 | | | | Nooksack Early | NF Nooksack | 1 | Sp | N | С | | ≥90 | ≤10 | <1 | 4 | 75 | 20 | 3.4-7.3 | 7.4-9.4 | | | SF Nooksack | 1 | Sp | N | W | | ≤69 | ≥31 | 1 | 10 | 61 | 28 | 3.4-7.4 | 8.1-10.1 | | Skagit | | | | | | | | | 10 | 73 | 2 | | | | | Spring | Upper Sauk | 1 | Sp | N | W | May-June | 55 | 45 | | | | | 4.2-7.1 | 7.2-9.4 | | | Suiattle Spr | 1 | Sp | N | W | May -June | 18-53 | 47-82 | 1 | 8 | 43 | 47 | 4.2-7.1 | 7.2-9.4 | | | Upper
Cascade | 1 | Sp | N | W | May- June | | | | | | | 4.2-7.1 | 7.2-9.4 | | Skagit | | | | | | | | | | | | | | | | Summer / Fall | Lower Sauk | 1 | Su | N | W | | | | | | | | 6.2-8.1 | 8.2-10.2 | | | Upper Skagit
MS / Tribs. | 1 | Su | N | W | | | | | | | | 6.1-8.1 | 8.2-10.2 | | Otilla maniala | Lower Skagit
MS / Tribs. | 1 | Fa | N | W | | | | | | | | 7.1-9.1 | 9.2-10.4 | | Stillaguamish
Summer / Fall | Ctilloguamich | 1 | Su | N | С | Mar-June | 97 | 3 | 4 | 30 | 59 | 7 | 6.1-8.1 | 8.2-10.1 | | Summer / Fair | Stillaguamish | | | 1 | 1 | iviai-Jurie | 97 | 3 | 4 | 30 | 59 | 1 | | | | | Stillaguamish | 1 | Fa | Unk. | W | | | | | | | | 8.4 | 9.1-10.4 | | Snohomish | Snohomish | 1 | 1 | Su-Fa | N | W | Apr-July | | | | | | 8.1-9.1 | 9.2-11.2 | | Summer / Fall | Wallace R. | 2 | 2 | Su -
Fa | М | С | | | | | | | | | | | Bridal Veil Cr. | 1 | 1 | Fa | N | W | Apr-July | | | | | | | | **Abbreviations: Population** NF = North Fork SF = South Fork **Recovery Category** 1= Genetically unique indigenous population present. 2 = Indigenous population no longer present but natural production possible. 3. No historically self-sustaining natural population **Race** Sp = Spring Su = Summer Fa = Fall **Origin** N = Natural C = Composite of Hatchery and Natural. **Production Type** W = Wild C = Composite of Hatchery and Wild **Status** C= Critical D = Depressed H = Healthy U = Unknown Sources: Stock Origin: Washington Department of Fisheries, 1993. Smolt Migration:, Appendix A Myers et al. 1998. Age at Smolting, Appendix A Myers et al.; Age at Maturation, Appendix B Myers et al. 1998; Fresh Water Entry: Table 1 Myers et al. 1998.; Spawn Timing: Table 1 Myers et al. 1998 Spawning Location / Description: Puget Sound Indian Tribes and Washington Department of Fish and Wildlife, 2003; Washington Department of Fisheries, 1993. Note: Spawners have been transported above Sunset Falls, a natural barrier, since 1958. ## Appendix Table B-2a. Factors limiting natural chinook production in Puget Sound watersheds. | Basin / Stock Group | Status | | Habitat Facto | ors Affecting Stock | Status | | |------------------------|-----------|---|------------------|----------------------|-----------------|-----------------------| | | | Dams
(River Mile Location /
Miles Habitat Lost) | Riparian Habitat | Flow / Water
Temp | Estuary Habitat | Hatchery
Influence | | Nooksack | | | | | | | | NF Nooksack Early | Critical | | 1 | | 1 | 4 | | SF Nooksack Early | Critical | | 1, 2 | | 1 | | | Skagit | | RM 97 / Unknown | | | | | | Upper Skagit Summer | Healthy | | 1, 2 | | 2 | | | Lower Skagit Fall | Depressed | | 2 | | 2 | 2 | | Lower Sauk Summer | Depressed | | 1 | | 2 | 3 | | Upper Sauk Spring | Healthy | | 1 | | 2 | 2 | | Suiattle Spring | Depressed | | 1 | | 2 | | | Upper Cascade Spring | Unknown | | | | 2 | | | Stillaguamish | | | | | | | | Stillaguamish Summer | Depressed | | 1, 2 | | 2 | 4 | | Stillaguamish Fall | Depressed | | 1, 2 | | 2 | | | Snohomish | | | | | | | | Snohomish Summer | Depressed | Sultan River RM 17 / 20 | 1, 2 | | 1 | | | Wallace Summer / Fall | Healthy | | | | 1 | 1 | | Snohomish Fall | Depressed | | 1, 2 | | 1 | | | Bridal Veil Creek Fall | Unknown | | 1, 2 | | 1 | | | Notes | Sources | |---|---| | Dams: Location of Dam (Rivermile) / estimated miles of lost spawning habitat. | S.P. Cramer and Associates 1999. | | Riparian Habitat: Riparian habitat affected by: Logging and associated road building including loss of large woody debris, siltation, and erosion 2. Diking and channel modification 3. Other land development practices and agriculture. | Pacific Fishery Management Council 1999. Puget Sound Indian Tribes and Washington Department of Fish and Wildlife 2003. Washington Department of Fisheries 1993. | | Flow / Water Temperature: 1. Loss of habitat from water diversions, dewatering of spawning redds; 2. Elevated stream temperatures from low flows due to diversion or runoff modification. | Pacific Fishery Management Council 1999. Puget Sound Indian Tribes and Washington Department of Fish and Wildlife 2003. Washington Department of Fisheries 1993. | | Estuary Habitat: Habitat loss or degradation due to: 1. port or industrial development 2. Agriculture, forestry, or urbanization. | Pacific Fishery Management Council 1999. Puget Sound Indian Tribes and Washington Department of Fish and Wildlife 2003. Washington Department of Fisheries 1993. S.P. Cramer and Associates 1999. | | Hatchery Influence: 1. Production hatchery using out-of-basin stock; 2. Production hatchery using within-basin stock; 3. Supplementation hatchery or indicator stock program; 4. Supplementation hatchery essential for recovery. | Pacific Fishery Management Council 1999. Puget Sound Indian Tribes and Washington Department of Fish and Wildlife 2003. Washington Department of Fisheries 1993. | ## Appendix Table B-2b.Factors limiting natural chinook production in Puget Sound watersheds. | Basin / Stock Group | Status | | Habitat Factors Affecting Stock Status | | | | | | | | | | |--|----------|---|--|----------------------|-----------------|-----------------------|--|--|--|--|--|--| | | | Dams
(River Mile Location /
Miles Habitat Lost) | Riparian Habitat | Flow / Water
Temp | Estuary Habitat | Hatchery
Influence | | | | | | | | Puyallup | | | | | | | | | | | | | | White Spring | Critical | RM 23.4 | 1, 2, 3 | 1 | 1 | 4 | | | | | | | | White Summer / Fall | Unknown | | 1, 2, 3 | 1 | 1 | | | | | | | | | Puyallup Summer /
Fall | Unknown | RM 41.7 / 10 | | | 1 | 1 | | | | | | | | Nisqually | | | | | | | | | | | | | | Nisqually Summer /
Fall | Healthy | RM 26 /
RM 43 / 30 | | | 1 | 1 | | | | | | | | South Sound | | | | | | | | | | | | | | South Sound Tributaries
Summer / Fall | Healthy | | | | 1 | 1 | | | | | | | | Hood Canal | | | | | | | | | | | | | | Hood Canal
Summer / Fall | Healthy | | 1,2,3 | | | | | | | | | | | Skokomish River | | RM 21 / 13 | 1 | 1 | | 1 (mixed origin) | | | | | | | | Juan de Fuca Strait | | | | | | | | | | | | | | Dungeness Spring /
Summer | Critical | | 1,2,3 | 1,2 | | 4 | | | | | | | | Elwha / Morse Creek
Summer / Fall | Healthy | RM 4.9 and 13.4 / 35 main and 35 tributaries | 1 | 2 | | 2 | | | | | | | | Notes | Sources | |---|--| | Dams: Location of Dam (Rivermile) / estimated miles of lost spawning habitat. | S.P. Cramer and Associates. 1999 | | Riparian Habitat: Riparian habitat affected by: Logging and associated road building including loss of large woody debris, siltation, and erosion 2. Diking and channel modification 3. Other land development practices and agriculture. | Pacific Fishery Management Council 1999. Puget Sound Indian Tribes and Washington Department of Fish and Wildlife 2003. Washington Department of Fisheries 1993. | | Flow / Water Temperature: 1. Loss of habitat from water diversions, dewatering of spawning redds; 2. Elevated stream temperatures from low flows due to diversion or runoff modification. | Pacific Fishery Management Council 1999. Puget Sound Indian Tribes and Washington Department of Fish and Wildlife. 2003. Washington Department of Fisheries 1993. | | Estuary Habitat: Habitat loss or degradation due to: 1. port or industrial development 2. Agriculture, forestry, or urbanization. | Pacific Fishery Management Council 1999. Puget Sound Indian Tribes and Washington Department of Fish and Wildlife. 2003. Washington Department of Fisheries 1993. S.P. Cramer and Associates 1999. | | Hatchery Influence: 1. Production hatchery using out-of-basin stock; 2. Production hatchery using within-basin stock; 3. Supplementation hatchery or indicator stock program; 4. Supplementation hatchery essential for recovery. | Pacific Fishery Management Council 1999. Puget Sound Indian Tribes and Washington Department of Fish and Wildlife 2003. Washington Department of Fisheries 1993. | Appendix Table B-3a. Hydrological and spawning area profiles of chinook spawning basins in northern Puget Sound. | Watershed
Tributary | Area (mi2) | Avg. Elev.
(ft.) | Chinook Spawning Tributaries | Spawning Miles
Used | Upstream Migration Barriers | | | | | |------------------------|-------------|---------------------|--|------------------------|------------------------------------|------------|---------|--|--| | Nooksack | 795 | 2208 | | 90.6 | Barrier | RM | Passage | | | | NF Nooksack | | | Boulder, Canyon, Cornell, Deadhorse, Glacier, Kendall, Maple and Racehorse Creek | 49.8 | Nooksack Falls | 65 | No | | | | SF Nooksack | | | Hutchinson and Skookum Creek | 40.8 | | | | | | | MF Nooksack | | | | 7.0 | Bellingham Water
Diversion | 7.2 | No | | | | Skagit | | | | | | | | | | | Lower Skagit | 447 | 1128 | Bacon, Carpenter, Day, Diobsud, Finney, Goodell, Illabot, Jackman, Jones, Mannser, Morgan, Nookachamps Creek; Baker River, McLeod Slough | 53.4 | Lower Baker Lk.
Upper Baker Lk. | 1.1
9.3 | T&H | | | | Sauk | 741 | 3726 | Suiattle, N.F. Sauk, South Fork Sauk, Whitechuck River;
Clear and Dan Creek | 97.8 | | | | | | | Suiattle | 346 | | Big, Buck, Downey, Lime, Milk, Straight, Sulphur, and Tenas Creek | 42.7 | | | | | | | Upper Skagit | 1630 ¹ | 4002 | Goodell, and Illabot Creek; Cascade River | 51.4 | Gorge | 96.6 | No | | | | Stillaguamish | 704 | 1792 | | 132.8 | | | | | | | NF Stillaguamish | 284 | | | 40.3 | | | | | | | SF Stillaguamish | 255 | | Canyon and Jim Creek | 46.2 | | | | | | | Snohomish | 278 | 518 | | | | | | | | | Skykomish | 853 | 2769 | Sultan and Wallace R., Proctor, Deer, Elwell and Woods Cr. | 159.6 | Sultan R. Water
Diversion | 9.7 | No | | | | NF Skykomish | 147 | | GI. | 14.0 | Diversion | 9.7 | INO | | | | SF Skykomish | 362 | | Foss, Miller and Beckler River; Money and Bridal Veil Cr. | 44.0 | Sunset Falls | | Yes | | | | Snoqualmie | 693 | 2136 | Raging and Tolt River; Tokul Creek | | Snoqualmie Falls | | | | | | | | | | | Tolt R. S. Fk | 8.4 | No | | | Sources: **Area and Elevation**; USGS data from University of Montana Environment Statistics Group, Hydrological Research Project (website). **Spawning Tributaries and Use**; S.P. Cramer and Associates, 1999. Washington Department of Fisheries, 1993; **Migration Barriers**; S.P. Cramer and Associates, 1999. Myers et al. 1998. Appendix Table B-3b.Hydrological and spawning area profiles of chinook spawning basins in southern Puget Sound, Hood Canal and Strait of Juan de Fuca. | Watershed
Tributary | Area (mi2) | Avg. Elev.
(ft.) | Chinook Spawning Tributaries | Spawning Miles
Used | Upstream Migrati | ion Barrie | rs | |---|--------------------|---------------------|--|------------------------|---------------------------------------|--------------|--------------| | Lake Washington | 619 | 898 | | | Barrier | RM | Passage | | · · | | 000 | Issaquah Creek and Northern Tributaries | 116.6 | Ballard Locks | 0 | Yes | | Cedar River | 188 | | | 22.6 | Landsburg Diversion | 21.3 | No | | Duwamish / Green | 487 | 1671 | Soos, Crisp, May and Newaukum Creek | 110.8 | Tacoma Water Diversion | 60.3 | No | | Puyallup
Carbon
White | 996 | 2892 | Clark, Fennel and Kapowsin Creek
South Prairie and Voight Creek
Clearwater, Greenwater and West Fork White River; Boise
and Blueberry Creek | 146.8
31.5
72.3 | Electron Diversion Buckley Diversion | 41.8 | No
T&H | | | | | and bideberry Creek | 12.3 | Mud Mountain | 29.7 | T&H | | Nisqually | 726 | 1778 | Mashel River; Ohop and Yelm Creek | 87.5 | Yelm Diversion
La Grande | 26.2
42.5 | Ladder
No | | S. Sound Tribs
Deschutes | 168 | 829 | | 44.5 | | | | | Skokomish
NF Skokomish
SF Skokomish | 248 | 1896 | | 51.5
29.0
10.5 | Cushman No.2 | 17.3 | No | | Hood Canal | 957 | 2333 | Anderson, Big Beef, Eagle, Fulton, Lilliwaup, Misson, Stavis, and Tarboo Cr.; Big Quilcene, Dewatto, Dosewalips, Duckabush, Hamma Hamma, Little Quilcene, Tahuya and Union River | 44.7 | | | | | Strait of Juan de Fuca
Dungeness / Elwha
Dungeness
Elwha | 1270
198
321 | 2674 | Canyon Creek; Graywolf River | 31.0
9.9 | Elwha
Glines Canyon | 4.9
13.5 | | Sources: **Area and Elevation:** USGS data from University of Montana Environment Statistics Group, Hydrological Research Project (website). **Spawning Tributaries and Use:** S.P. Cramer and Associates, 1999. Washington Department of Fisheries, 1993; **Migration Barriers:** S.P. Cramer and Associates, 1999. Myers et al. 1998. Appendix Table B-4. Releases of juvenile hatchery chinook in Puget Sound 1991–2000 (thousands of fish). | | | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | Grand Total | |--------------------------|----------------------------------|----------------------------|--------------------------|----------------------------|----------------------------|--------------------------|------------------------|---------------------------|---------------------|------------------------|---------------------|----------------------------------| | S. Puget Sound Tribs | Fall
Spring | 19,441
- | 18,964 | 15,832 | 7,643
339 | 16,917
337 | 15,675
341 | 15,054
343 | 18,217
339 | 16,983
203 | 20,483
371 | 165,209
2,273 | | Duwamish | Fall | 12,149 | 5,302 | 6,067 | 4,424 | 7,915 | 5,886 | 6,403 | 4,786 | 4,348 | 3,971 | 61,250 | | Nooksack | Fall
Spring | 5,990
355 | 9,030
181 | 5,889
887 | 7,156
1,391 | 7,221
741 | 6,353
189 | 4,284
841 | 2,166
1,488 | 1,800
2,307 | 1,200
1,712 | 51,089
10,093 | | Hood Canal
Nisqually | Fall
Spring
Fall | 1,779
422
2,902 | 2,213
249
1,742 | 1,257
269
1,063 | 863
334
1,796 | 1,862
149
2,957 | 3,768
154
2,847 | 5,265
114
4,239 | 3,959
-
3,605 | 3,980
-
4,342 | 3,402
-
4,277 | 28,348
1,692
29,770 | | Other Puget Sound | Fall
Spring
Summer | 3,491
-
- | 2,041
-
- | 2,357
-
- | 1,995
-
- | 1,935
35
- | 2,717
37
- | 3,507
30
- | 2,576
41
- | 2,704
119
117 | 2,859
46
185 | 26,181
309
303 | | Lake Washington | Fall | 4,357 | 2,910 | 2,186 | 2,031 | 2,401 | 2,394 | 2,073 | 2,930 | 2,374 | 1,689 | 25,344 | | Elwha | Fall | 2,622 | 3,967 | 632 | 1,955 | 2,443 | 2,579 | 2,375 | 2,176 | 4,025 | 1,803 | 24,577 | | Puyallup | Fall | 3,275 | 2,008 | 2,829 | 2,207 | 3,059 | 2,757 | 1,899 | 1,978 | 2,012 | 2,006 | 24,029 | | Snohomish | Fall
Spring
Summer | 915
-
212 | 430
-
305 | 294
-
618 | 709
-
1,004 | 1,468
-
281 | 1,361
-
1,196 | 1,376
102
1,390 | -
355
1,450 | -
-
778 | -
-
2,224 | 6,552
457
9,457 | | Skagit Strait of Georgia | Fall
Spring
Summer
Fall | 1,145
419
305
555 | 786
285
986
412 | 1,839
642
583
420 | -
1,043
417
1,379 | -
503
192
1,375 | -
484
138
965 | 100
380
23
1,005 | 388
202
2,105 | 6
394
246
998 | 32
398
-
- | 3,908
4,935
3,092
9,215 | | White R. | Spring | 451 | 1,115 | 1,027 | 789 | 728 | 836 | 867 | 1,107 | 395 | 684 | 8,001 | | Dungeness | Spring | - | - | - | - | - | 18 | 1,776 | 2,050 | 1,775 | 1,501 | 7,121 | | Skokomish | Fall | 198 | 1,713 | 294 | - | - | 348 | 96 | 312 | 234 | - | 3,195 | | W. Strait | Fall | 194 | 223 | 191 | 235 | 326 | 319 | 83 | 240 | 186 | 279 | 2,277 | | Stillaguamish | Summer | - | 202 | 100 | 235 | 344 | 35 | 218 | 95 | - | 367 | 1,596 | | Grand Total | | 61,178 | 55,063 | 45,275 | 37,943 | 53,190 | 51,397 | 53,845 | 52,565 | 50,328 | 49,489 | 510,272 | Source: Pacific States Marine Fisheries Commission Regional Mark Information Service Database, December, 2002. Appendix Table B-5. Summary of chinook exploitation rates from Fishery Regulation Assessment Model Runs (2002 Validation) | | | | | Tota | I Adult Ed | uivalen | t Mortality: / | All Fisheries | | | | | | |------|------------|---------------|------------|----------|------------|---------|----------------|---------------|-----------|------------|-------|----------|-----------| | | Skagit | Stillaguamish | Snohomish | Nooksack | Skagit | White | Nooksack | Hood Canal | JDF Tribs | Lake | Green | Puyallup | Nisqually | | | S/F Nat \1 | S/F | S/F Nat \1 | Early \2 | Spr Nat | Spr \3 | S/F | S/F | S/F | Washington | River | River | River | | 1983 | 78% | 73% | 73% | 49% | 75% | 59% | 91% | 81% | 80% | 82% | 86% | 81% | 102% | | 1984 | 71% | 61% | 63% | 43% | 63% | 41% | 89% | 69% | 57% | 76% | 57% | 68% | 92% | | 1985 | 65% | 46% | 55% | 43% | 58% | 33% | 85% | 70% | 68% | 79% | 75% | 76% | 88% | | 1986 | 59% | 62% | 60% | 43% | 56% | 44% | 89% | 82% | 88% | 69% | 58% | 70% | 90% | | 1987 | 60% | 47% | 47% | 42% | 62% | 35% | 88% | 84% | 71% | 79% | 53% | 82% | 106% | | 1988 | 58% | 57% | 66% | 50% | 59% | 35% | 90% | 75% | 71% | 87% | 63% | 77% | 85% | | 1989 | 71% | 47% | 52% | 37% | 75% | 36% | 79% | 77% | 85% | 77% | 61% | 72% | 91% | | 1990 | 50% | 47% | 49% | 32% | 50% | 33% | 74% | 71% | 75% | 69% | 71% | 66% | 85% | | 1991 | 53% | 38% | 52% | 36% | 66% | 48% | 81% | 70% | 58% | 82% | 65% | 66% | 81% | | 1992 | 63% | 42% | 61% | 34% | 57% | 32% | 73% | 79% | 57% | 81% | 75% | 68% | 86% | | 1993 | 65% | 28% | 61% | 30% | 46% | 24% | 67% | 63% | 70% | 61% | 74% | 70% | 82% | | 1994 | 57% | 29% | 49% | 28% | 51% | 49% | 80% | 69% | 62% | 38% | 68% | 69% | 96% | | 1995 | 60% | 43% | 64% | 24% | 47% | 34% | 71% | 37% | 39% | 31% | 37% | 76% | 89% | | 1996 | 30% | 34% | 42% | 18% | 45% | 33% | 54% | 33% | 41% | 28% | 42% | 67% | 86% | | 1997 | 37% | 31% | 29% | 22% | 42% | 22% | 63% | 40% | 32% | 29% | 31% | 60% | 76% | | 1998 | 23% | 15% | 24% | 15% | 28% | 19% | 84% | 16% | 46% | 15% | 30% | 35% | 78% | | 1999 | 33% | 20% | 31% | 17% | 21% | 28% | 51% | 48% | 18% | 20% | 29% | 74% | 80% | | 2000 | 24% | 27% | 26% | 17% | 31% | 19% | 64% | 51% | 34% | 42% | 51% | 72% | 68% | ¹ Only the portion of Skagit and Snohomish fingerling and yearling stocks representing wild chinook are presented in this table. Source: Northwest Indian Fisheries Commission ^{2 &}quot;Nooksack Early" stock comprises an aggregation of North Fork and South Fork Early ("Spring" or "Native") stocks. ^{3 &}quot;White River Spring" stock is represented by fingerlings originating from the White River. Appendix Table B-6. Percent of harvest mortality occuring on Puget Sound chinook indicator stocks by fishing area. | | | | | | | Catch | | | | | | |----------------------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Stock | Fishing Area | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | | Hood Canal Fall | Alaska | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 5.2% | 2.3% | 0.7% | | (George Adams Hatchery) | Canada | 30.7% | 25.1% | 54.3% | 22.3% | 41.0% | 51.5% | 25.5% | 6.7% | 26.5% | 61.4% | | | U.S. Troll | 10.0% | 21.7% | 9.4% | 0.0% | 1.4% | 14.1% | 8.0% | 5.0% | 12.0% | 5.9% | | | U.S. Net | 36.5% | 8.9% | 5.2% | 44.4% | 7.6% | 0.0% | 2.1% | 5.5% | 30.0% | 0.0% | | | U.S. Sport | 22.7% | 44.3% | 31.1% | 33.2% | 50.0% | 34.4% | 64.4% | 77.6% | 29.1% | 32.0% | | Nisqually Fall | Alaska | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.3% | 1.0% | 0.3% | 0.4% | 0.4% | | | Canada | 21.7% | 23.4% | 34.6% | 13.9% | 19.6% | 9.2% | 12.8% | 6.3% | 10.3% | 29.6% | | | U.S. Troll | 20.1% | 9.7% | 4.7% | 0.9% | 3.8% | 2.4% | 1.3% | 1.4% | 5.4% | 2.0% | | | U.S. Net | 24.3% | 26.1% | 30.2% | 26.3% | 39.9% | 52.6% | 29.8% | 51.9% | 48.5% | 40.5% | | | U.S. Sport | 33.9% | 40.8% | 30.5% | 59.0% | 36.7% | 35.4% | 55.0% | 40.1% | 35.3% | 27.5% | | Nooksack Spring | Alaska | 0.0% | 4.9% | 0.0% | 1.1% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 4.3% | | | Canada | 75.6% | 73.8% | 66.7% | 79.5% | 62.9% | 77.4% | 48.3% | 79.6% | 74.2% | 87.0% | | | U.S. Troll | 3.5% | 1.9% | 1.4% | 0.4% | 0.0% | 1.9% | 0.0% | 0.0% | 7.9% | 0.0% | | | U.S. Net | 11.1% | 0.7% | 9.3% | 11.4% | 7.7% | 0.0% | 6.4% | 1.8% | 9.0% | 0.0% | | | U.S. Sport | 9.8% | 18.7% | 22.6% | 7.6% | 29.4% | 20.8% | 45.2% | 18.5% | 9.0% | 8.7% | | Samish Fall | Alaska | 0.0% | 0.0% | 0.0% | 0.6% | 0.3% | 0.1% | 1.6% | 5.1% | 5.4% | 0.0% | | | Canada | 43.3% | 38.7% | 58.8% | 45.3% | 27.5% | 18.4% | 25.9% | 22.4% | 37.2% | 91.4% | | | U.S. Troll | 12.5% | 12.8% | 5.1% | 2.8% | 4.8% | 2.5% | 1.7% | 1.2% | 2.5% | 1.2% | | | U.S. Net | 28.5% | 18.2% | 19.2% | 45.7% | 35.1% | 43.1% | 52.7% | 63.3% | 49.1% | 7.4% | | | U.S. Sport | 15.7% | 30.3% | 16.8% | 5.6% | 32.3% | 35.9% | 18.2% | 7.9% | 5.9% | 0.0% | | Skagit Spring | Alaska | | | | | | | 0.4% | 1.5% | 2.3% | 1.6% | | | Canada | | | | | | | 51.7% | 48.0% | 49.2% | 62.0% | | | U.S. Troll | | | | | | | 0.0% | 0.0% | 0.6% | 0.0% | | | U.S. Net | | | | | | | 2.6% | 5.3% | 3.4% | 2.5% | | | U.S. Sport | | | | | | | 45.3% | 45.2% | 44.4% | 33.9% | | Sosuthern Puget Sound Fall | Alaska | 0.7% | 1.0% | 0.5% | 0.0% | 0.6% | 0.6% | 1.6% | 5.3% | 2.1% | 1.3% | | • | Canada | 29.7% | 33.0% | 40.6% | 36.9% | 30.7% | 23.5% | 33.5% | 16.8% | 27.0% | 43.0% | | | U.S. Troll | 16.4% | 11.0% | 7.9% | 1.3% | 4.2% | 8.9% | 5.3% | 4.2% | 11.6% | 0.8% | | | U.S. Net | 33.8% | 25.6% | 20.2% | 29.2% | 16.1% | 17.3% | 8.7% | 29.4% | 31.9% | 23.8% | | | U.S. Sport | 19.5% | 29.4% | 30.8% | 32.6% | 48.5% | 49.7% | 50.9% | 44.3% | 27.4% | 31.0% | | Stillaguamish Fall | Alaska | 0.5% | 0.0% | 0.0% | 7.9% | 4.1% | 2.0% | 20.4% | 48.5% | 7.4% | 30.6% | | • | Canada | 41.1% | 35.3% | 54.9% | 66.6% | 52.8% | 50.0% | 41.0% | 32.4% | 73.1% | 60.7% | | | U.S. Troll | 15.3% | 6.3% | 8.6% | 0.0% | 1.5% | 0.0% | 0.0% | 0.0% | 0.0% | 2.7% | | | U.S. Net | 17.3% | 12.4% | 2.0% | | 3.5% | 0.4% | 3.4% | | 1.4% | 2.2% | | | U.S. Sport | 25.8% | 46.0% | 34.4% | 19.3% | 38.1% | 47.6% | 35.2% | 12.1% | 18.0% | 3.8% | | White River Spring | Alaska | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | | | Canada | 3.5% | 12.8% | 2.8% | 4.9% | 1.4% | 2.2% | 0.0% | 0.0% | 7.3% | 16.6% | | | U.S. Troll | 6.6% | 4.0% | 6.0% | 0.0% | 0.0% | 0.0% | 0.0% | 3.8% | 0.0% | 0.0% | | | U.S. Net | 15.6% | 11.0% | 6.7% | 2.8% | 2.1% | 0.6% | 6.6% | 3.8% | 0.0% | 8.4% | | | U.S. Sport | 74.3% | 72.2% | 84.5% | 92.3% | 96.5% | 97.2% | 93.4% | 92.3% | 92.7% | 75.0% | Source: Pacific Salmon Commission 2002.